Osama Yousif Mohammed Sultan (Assistant Professor)
PhD in Differential Equations
Lecturer
Mathematics -
Education for Pure Sciences
Ibrsul_2019@uoanbar.edu.iq
<p><span style="font-size:large"><span style="font-family:"Times New Roman""><strong>Osama yousif mohammed sultan Alabdali Name 8/7/1977 Date of Birth Differential Equations Specialization lecturer Position Teacher Scientific Degree Anbar university/Math.Dep. Work Address 07832369953 Mobile Alsltan_2006@yahoo.com E. mail B.Sc. Scientific Certification M.Sc. ? Ph.D.</strong></span></span></p>
<p> </p> <h2> </h2> <p> </p> <p> <strong>1</strong>. <strong>On the approximation of strongly convex functions by an upper or lower operator</strong>, <span style="color:#2ecc71">Appl. Math. Comput</span>., 247(1129-1138), <strong><em>2014</em></strong></p> <ul> <li><strong> 2</strong> . <strong>New cubature formulas and Hermite-Hadamard type inequalities using integrals over some hyperplanes in the d-dimensional hyper-rectangle</strong>., <span style="color:#2ecc71">Appl. Math. Comput</span> 315(347-362),<strong><em> 2017</em></strong></li> <li><strong>3</strong> . <strong>Characterizations of uniform convexity for differentiable functions,</strong> <span style="color:#2ecc71">Appl. Anal. Discrete Math</span>., 13(721-732), <strong><em>2019</em></strong></li> <li><strong>4 . Sharp multidimensional numerical integration for strongly convex functions on convex polytopes</strong>, <span style="color:#2ecc71">Filomat</span><strong>, </strong> <em><strong>2020</strong></em> ,Volume 34, Issue 2, Pages: <strong>601- 607</strong></li> <li><strong>5. Evaluation and Determination of the Parameters of a Photovoltaic Cell by an Iterative Method</strong>, <span style="color:#2ecc71">Journal of Al-Qadisiyah for computer science and mathematics</span>, <em><strong>2021</strong></em>, vol (13), No 1, Page: <strong>34–42</strong></li> <li><strong>6. On Some Properties in Fuzzy Metric Space</strong>, <span style="color:#2ecc71">Journal of Al-Qadisiyah for computer science and mathematics</span>, <strong>2021</strong>, vol (13), No 1, Page: <strong>55–61</strong></li> <li><strong>7.</strong> <strong>Orthogonal Boubaker-Turki polynomials algorithm for problems arising in engineering.</strong></li> <li><a href="https://www.scopus.com/authid/detail.uri?authorId=56389574200#disabled" tabindex="-1" title="Show document details"><span style="color:#2ecc71">AIP Conference Proceedings</span></a>, 2022, 2386, 050019.</li> <li><strong>8. Optimal Estimates of Approximation Errors for Strongly Positive Linear Operators on Convex Polytopes</strong></li> <li><strong><span style="color:#2ecc71">.</span><a href="https://www.scopus.com/authid/detail.uri?authorId=56389574200#disabled" tabindex="-1" title="Show document details"><span style="color:#2ecc71">Filomat</span></a>, 2022, 36(2), pp. 695–701</strong></li> <li> </li> </ul>
# | المادة | اسم المحاضرة | المرحلة | التحميل | مشاهدة |
---|